
Reinforcement Learning for Reduced-order Models of Legged Robots

Yu-Ming Chen1, Hien Bui1 and Michael Posa1

Abstract— Model-based approaches for planning and control
for bipedal locomotion have a long history of success. It can
provide stability and safety guarantees while being effective
in accomplishing many locomotion tasks. Model-free reinforce-
ment learning, on the other hand, has gained much popularity
in recent years due to computational advancements. It can
achieve high performance in specific tasks, but it lacks physical
interpretability and flexibility in re-purposing the policy for
a different set of tasks. For instance, we can initially train
a neural network (NN) policy using velocity commands as
inputs. However, to handle new task commands like desired
hand or footstep locations at a desired walking velocity, we
must retrain a new NN policy. In this work, we attempt
to bridge the gap between these two bodies of work on a
bipedal platform. We formulate a model-based reinforcement
learning problem to learn a reduced-order model (ROM)
within a model predictive control (MPC). Results show a 49%
improvement in viable task region size and a 21% reduction
in motor torque cost. All videos and code are available at
https://sites.google.com/view/ymchen/research/rl-for-roms.

I. INTRODUCTION

Model-based planning and control have shown significant
success for many years in navigating legged robots [3]–[8].
For example, Boston Dynamics’s bipedal robots performed
parkour and natural walking [5], [9], while SRI’s humanoid
DURUS achieved high energy efficiency in walking [10],
[11]. Moreover, having robot models makes it possible to
analyze the system stability and provide stability or safety
guarantees via techniques such as capturability [12], sums
of squares [13], hybrid zero dynamics [14] or control bar-
rier functions [15]–[17]. However, as these methods can
be computationally costly, reduced-order models (ROMs)
are frequently deployed to achieve real time planning and
control, albeit at the cost of reduced performance [8], [18].

On the other hand, model-free reinforcement learning (RL)
has emerged as a powerful tool for automatically synthesiz-
ing high-performance control policies [19]–[23]. Siekmann
et al. highlighted the robustness achieved by a neural network
(NN) policy in blind stair-walking [19], while Ma et al.
developed a policy utilizing a robot’s arm for fall damage
mitigation and recovery [22]. These works demonstrate that
neural networks, as universal approximators, enable robots
to excel in specific tasks. However, model-free polices lack
interpretability, rendering the existing model-based stability
and safety techniques unsuitable. Additionally, the model-
free methods struggle with generalizing policies to new
task parameters without policy retraining, as task space

1The authors are with the General Robotics, Automation, Sens-
ing and Perception (GRASP) Laboratory, University of Pennsylva-
nia, Philadelphia, PA 19104, USA {yminchen, xuanhien,
posa}@seas.upenn.edu

parameterization is determined during the training phase.
For example, the policy described in [22] effectively recov-
ers a fallen robot but does not consider walking velocity
commands. To enable the robot to walk, it is necessary to
incorporate these velocity commands as additional inputs to
the NN and undergo a fresh policy training process. More-
over, robots may encounter a wide array of potential tasks,
such as footstep timing, adaptive limb adjustment during
hardware failure, head movement for item detection, whole-
body interactions between arms and legs, or collaborative
furniture carrying with humans. Thus, it is impractical to
enumerate all possible tasks to avoid future policy retraining.

This paper attempts to combine model-based planning and
control with reinforcement learning to obtain the best of
both worlds in the context of bipedal locomotion. It aims
to retain the physical intepretabilty and the task flexibility of
the model-based approach, while utilizing the RL capability
in maximizing robot performance. Specifically, we use model
predictive control (MPC) as the model-based control policy
and learn a model within the MPC that maximizes the robot’s
performance via RL.

Within the MPC, ROMs are often used in order to achieve
real time planning [6], [24], [25]. Classical approaches to
reduced-order modeling often seek to find low-dimensional
models which approximate some collected data (e.g. in
approximating the solutions to fluid dynamics [26]). For
a controlled system, such as a bipedal robot, the data is
necessarily a product of the control policy, and thus the data
and the ROM-induced controller are invariably intertwined.
Nonetheless, recent work in locomotion has attempted this
classical approach via model-based RL [27], or via robust
control (treating the gap between a ROM and the full model
as a disturbance [28]).

In contrast, we jointly optimize over the ROM and the in-
duced control policy. Robot actuators are partially utilized to
ensure that the system behaves like the reduced-order model,
up to the limits of control performance. With this perspective,
a good ROM is not one that matches some existing set of
robot behaviors. Rather, we find task-optimal ROMs that
maximize robot performance when deployed in conjuction
with modern model-based planning and control architectures.
Our prior work [18] optimizes controller-agnostic ROMs via
trajectory optimization. However, the performance of the
ROM may not seamlessly transfer to the robot due to the
influence of specific heuristics or designs of the controller. In
this paper, we improve our prior work by taking into account
the control policy used on the robot while optimizing the
ROM. This effectively closes the performance gap between
offline model optimization and online model deployment.

ar
X

iv
:2

31
0.

09
87

3v
1

 [
cs

.R
O

]
 1

5
O

ct
 2

02
3

https://sites.google.com/view/ymchen/research/rl-for-roms

Fig. 1. The diagram of our reinforcement learning framework for reduced-order models (ROMs) of legged locomotion. We learn a ROM in simulation
where the robot is controlled via a real time model predictive control (MPC). The MPC follows a high-level command (task) and operates based on a
time-based finite state machine (FSM), governing footstep timing in left-support, right-support, or double-support state. The MPC contains two trajectory
generators – a reduced-order model planner and a regularization trajectory generator to fill out the joint redundancy of the robot. All desired trajectories are
converted to desired acceleration command via PD feedback control before being sent to the Operational Space Controller (OSC), a quadratic-programming-
based inverse-dynamics controller [1], [2]. In this learning framework, the ROM planner is the policy, while everything else in the closed-loop system,
such as the simulation and OSC, constitutes the environment. We parameterize the policy using ROM parameters, specifically the parameters of ROM
dynamics. The optimizer collects data from simulation rollouts and updates the model (policy) parameters according to a user-specified reward function.
To ensure that the optimizer collects data at a consistent rate, we maintain a fixed update rate of 20Hz for the ROM planner, and we downsample the
environment state (which operates at 1000Hz) to match this 20Hz rate.

A. Contributions

1) Formulate a reinforcement learning problem to directly
optimize, with respect to a user-specified objective
function, a reduced-order model given a controller.

2) Demonstrate that the RL algorithm improves the model
performance by evaluating the model performance in
detail, compared to both an existing model (LIP) and
an optimal model from our prior work.

3) Demonstrate the flexibility of our model-based ap-
proach in task space parameterization in the post-
training phase.

II. BACKGROUND

A. Full-order Model of Cassie
Cassie [29] is a two-legged robot with closed-loop link-

ages and compliant components (leaf springs). It has line-
feet, so there is one degree of freedom of underactuation
when it stands on one foot. In the full dynamics, we model
the linkages using (holonomic) distant constraints, and we
account for the reflected inertia of the motors and also joint
frictions. Let q ∈ R23 and u ∈ R10 be the configuration
and input of the full-order model respectively. Let v be the
velocity of the robot’s configuration, and x = [q, v] be the
state of the robot.

B. ROMs for Legged Locomotion
Let y and τ be the configuration and input of the reduced-

order model of a robot respectively. The reduced-order model

can be defined by two functions – an embedding function and
the dynamics of the ROM

y = r(q), (1a)
ÿ = g(y, ẏ, τ). (1b)

Reduced-order models for legged locomotion commonly
describe the center of mass (CoM) motion, while each model
imposes different constraints on the robot to derive its own
CoM dynamics [30], [31]. For example, the linear inverted
pendulum model (LIP) [30], [32] assumes zero vertical
CoM accelerations, and the spring-loaded inverted pendulum
model (SLIP) [31] enforces a spring-mass dynamics. Inspired
by this, we search for an optimal CoM dynamics g, while
using the same embedding function r, the CoM position
relative to the stance foot, as LIP and SLIP. In this case,
dim(y) = 3. Furthermore, we assume dim(τ) = 0 for
simplicity, although we keep τ in Eq. (1), since ROMs can
have inputs in general (e.g. angle torques or the center of
pressure [30]).

C. Model Predictive Control

Model predictive control (MPC) is a control technique that
plans for desired input trajectories by predicting the robot’s
state in a receding horizon fashion [6], [24], [25]. For legged
robots [29], [33], [34], the full models are usually too high
dimensional to allow real time planning, so common ROMs
introduced in Section II-B are used instead. Our MPC for

Cassie is outlined in Fig. 1. It consists of a few components
– a high-level command generator, a finite state machine,
trajectory generators (including a ROM planner) and a low-
level controller.

1) High-level Command Generator: At the beginning of
the diagram is a high-level command generator (a task
generator). It outputs the desired stride length, the desired
turning rate and the perceived ground incline level.

2) Finite State Machine: The MPC follows a predefined
step timing dictated by the finite state machine. This deter-
mines the ground contact sequence inside the ROM planner
and the contact mode inside the Operational Space Control.

3) Trajectory Generator: The primary trajectory gener-
ator creates a plan for the desired CoM state and desired
footstep location given a high-level command. Specifically,
the ROM planner solves an reduced-order trajectory opti-
mization problem which minimizes an objective function
while satisfying a set of constraints. The objective function
predominantly minimizes the tracking error for the high-level
commands. The constraints account for the initial state of
the ROM, the dynamics of the ROM, and the input and state
constraints. In this case, the inputs are the footstep locations,
so the input constraints take care of the feasible stepping
location. For more details of the planner, we refer to Section
IV of [18]. Besides the planner, we also need to specify
desired trajectories for the remaining degree of freedom of
the robot. We generate these regularization trajectories by
simple heuristics such as maintaining a horizontal attitude of
the pelvis body, having the swing foot parallel to the contact
surface, and aligning the hip yaw angle to the desired heading
angle.

4) Low-level Controller: All desired trajectories (func-
tions of time) from the trajectory generators are passed
into PD feedback controllers where they are converted into
desired accelerations. Finally, Operational Space Control is
an inverse dynamics controller formulated as a quadratic
programming problem [1], [2]. It takes into account the full
model dynamics in the optimization problem and outputs
an optimal input u that minimizes the tracking error of the
desired accelerations.

III. PROBLEM STATEMENT

Our goal is to find the optimal model parameters that max-
imize the performance of the robot given a task distribution
Γ. In this study, Γ is a uniform distribution over a range of
stride length, turning rate and ground incline. Let u(θ) be
a model-based control policy (i.e. a controller) that guides
the robot to follow the trajectories of a ROM parameterized
by θ. From another viewpoint, this same policy u(θ) also
constrains the robot to behave like the ROM. Let {(xt, ut) |
t = 1, 2, ..., T} be the state and input trajectories of the robot
completing a task γ ∼ Γ under the policy u(θ). We evaluate
the performance for this task γ and policy u(θ) using a cost
function h(x, u) accumulated over the trajectories:

Hγ,u(θ) =

T∑
t=1

h (xt, ut) . (2)

Given this evaluation metric, an optimization problem for
finding the model can be formulated as

min
θ

Eγ∼Γ min
u(θ)

[
Hγ,u(θ)

]
, (3)

where the inner-level optimization minimizes the cost
Hγ,u(θ) over all possible controllers u(θ) that constrain the
robot to behave like a ROM parameterized by θ, and the
outer-level optimization minimizes the expectation of inner-
level cost over a task distribution. Eq. (3) has been proven to
be solvable by our prior work [18] with successful results.
However, the optimal policy u(θ) of (3) is not computable
online in real time, necessitating an alternative policy uo(θ)
for online model deployment. Thus, while solving (3) leads
to a ROM capable of maximal performance, this performance
is not necessarily realizable via real time control, leading to
reduced closed-loop performance. To improve this, in this
paper, we find the model parameters θ while using the control
policy uo(θ) during offline training:

min
θ

Eγ∼Γ

[
Hγ,uo(θ)

]
. (4)

Specifically, this control policy uo(θ) is the model predictive
control presented in Section II-C. This seemingly simple
change necessitates a significant shift in algorithmic ap-
proach, which we detail in Section IV.

IV. ROM LEARNING VIA RL

In this section, we cast the model optimization problem in
Eq. (4) as a model-based reinforcement learning problem.

A. Reinforcement Learning Structure

In reinforcement learning, the system comprises a policy
and an environment. The policy takes the current environ-
ment state s and outputs an action a. Given the current
state s and the action a, the environment transitions to the
next state s′. Each pair of state and action (s, a) results in
a reward r. In this work, the policy is the ROM planner,
and the environment includes everything else in the closed-
loop system (Fig. 1). Given this choice, the state of the
environment s includes the robot’s state and input (x, u),
task γ, and finite state machine information (including the
phase of the current state). The policy action a are the CoM
states and the foot step locations (the solution of the ROM
trajectory optimization). Additionally, we limit the policy’s
update rate to 20Hz, so that the state and action pairs are
collected at a fixed rate.

B. Policy Parameterization

We parameterize the ROM with monomials of the state of
the ROM, with linear weights. That is,

ÿ = gθ(y, ẏ, τ) = Θϕ(y, ẏ), (5)

where gθ is the ROM dynamics parameterized by θ, Θ ∈
Rny×nϕ is the matrix form of θ, and ϕ is the feature vector
containing the monomials. Even though we use monomials
here, any function approximator (e.g. a neural network) can
be used to parameterize the ROM dynamics in Eq. (5). We

note that the ROM parameters θ are the policy parameters,
as the ROM planner is the policy in our RL framework (Fig.
1).

In this paper, we initialize the ROM to an LIP, because
the LIP is effective for simple walking tasks, and this
initialization speeds up the learning process. To implement
this initialization, we augment the feature vector ϕ with the
terms in the LIP dynamics function. Additionally, we use
monomials of order up to 2. That is, ϕ includes elements
such as y1, y20 and y0ẏ1, where the subscripts denote the
indices of each element in y. Given this, θ is of dimension
90. The parameterization choice in Eq. (5) preserves physical
interpretability, since the learned model describes the CoM
dynamics.

C. Rewards and the RL Problem Statement

Instead of minimizing the cost in Eq. (4), our RL for-
mulation maximizes the return (i.e. accumulated rewards)
R =

∑T
t=1 rt, where rt is the reward at time t. Therefore,

to encourage minimizing the cost h(x, u) and achieving a
desired task γ, we design the reward function

r = exp(−w · h) + 0.5 exp (−∥γ − γfb∥W) , (6)

where w and W are constant weights, γ is the desired task
value, and γfb is the achieved task value (a function of
the robot’s state). We note that this reward is a function
of the environment state s. Furthermore, the accumulated
reward structure already incentivizes the robot to finish the
entire episode, eliminating the need for penalty terms in
case of early simulation termination (e.g. the robot falls).
In this paper, we choose h = uTu (quadratic cost on motor
torques), and the horizon T = 100 which is equivalent to 5
seconds of simulation time. Additionally, the user-specified
h is ultimately the metric for model performance evaluation.

The objective of our RL problem is to maximize the
expected return over the task distribution:

max
θ

Eγ∼Γ [R] . (7)

There are several algorithms for solving Eq. (7), such as
policy gradient and evolutionary strategy. In this work2, we
choose Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [35]. The advantage of this approach includes
easy parallelization [36] and easy hyperparameter tuning
(partially due to the absence of value approximation). We
use the package Optuna [37] for the CMA-ES optimizer.

Let pθ be the probability distribution over θ in the CMA-
ES algorithm. The exact problem that CMA-ES solves is

max
pθ

Eθ∼pθ
[Eγ∼Γ [R]] . (8)

The difference between Eq. (8) and (4), besides the cost-
reward difference, is the stochasticity of parameters θ needed
for the exploration of CMA-ES.

2Proximal Policy Gradient (PPO) also resulted in successful model
training in our experiment, but it required more hyperparameter tuning.

Algorithm 1 Evaluation of return R̂ (θ, {γj})
Input: model parameters θ and sampled tasks {γj}

1: for j = 1, . . . , Nγ do
2: Roll out an episode with the MPC in Section II-C
3: Compute the return Rγj

=
∑T

t=1 rt of this rollout
4: end for
5: return 1

Nγ

∑Nγ

j=1 Rγj

Algorithm 2 CMA-ES with curriculum learning
Input: initial mean θ0 and variance σ2

0 for the parameter
distribution pθ, and initial task set Γd

1: for iter = 1, 2, . . . do
2: if mod(iter, Nc) = 0 then
3: Grow the task set Γd (Section IV-D)
4: end if
5: Randomly draw Nγ tasks {γj} from Γd

6: Sample Nθ parameters {θi} ∼ pθ
7: for each sampled θi do
8: Compute return R̂ (θi, {γj})
9: end for

10: Update the mean and covariance of pθ (CMA-ES)
11: end for

D. Curriculum Learning

We observe that learning a policy for a large task space is
difficult, so we implement a curriculum learning similar to
[38] to facilitate the learning process. Our method discretizes
the continuous task domain of Γ into a set Γd. This set Γd

starts small and expands every Nc iterations by including the
adjacent tasks of successful tasks during learning.

To evaluate the inner expected value in Eq. (8), we
approximate it by randomly drawing Nγ number of tasks
from the set Γd and averaging the returns of these tasks.
Let R̂ be this approximate expected return given model
parameters θ. The evaluation of R̂ is shown in Algorithm
1. As a part of the curriculum learning, we also adjust
the number of tasks Nγ , as the size of Γd grows larger.
Specifically, Nγ = floor (ργ |Γd|) , where ργ is the sampling
percentage and | · | counts the number of elements in a set.

The algorithm for solving Eq. (8) with curriculum learning
is outlined in Algorithm 2. In every iteration, CMA-ES
samples a few model parameters θ’s according to pθ, and
evaluates the value (return R̂ in this case) for each sampled
θ. Given these values, CMA-ES updates the mean and the
covariance matrix of the parameter distribution pθ.

V. EXPERIMENTAL RESULT

We learn a ROM in simulation using Drake [39] offline,
and deploy it to the same simulation environment for detailed
evaluation comparison between the initial model and the
optimal model. We also compare this optimal model to
the one derived using the prior approach [18]. Lastly, we
showcase the flexibility in task space reparameterization in
Section V-D.

(a) Comparison against LIP (initial model) (b) Comparison against the optimal model of prior work’s approach

Fig. 2. Cost landscape comparisons. Fig. 2a compares the optimal model to the initial model. Fig. 2b compares the optimal models between this paper
and the prior work. For each model comparison, we create landscapes in two sets of experiments – one involving turning rate and stride length (with a
constant ground incline of 0 rad), and the other involving ground incline and stride length (with a constant turning rate of 0 rad/s). Each plot shows the
ratio of the optimal model’s cost to the compared model’s cost. The color scheme red-to-blue illustrates the degree to which the optimal ROM shows
improvement. Ratio below 1 means the optimal ROM performs better than the compared model, and vice versa. Green color shows the task regions gained
by the optimal model, and orange color shows the task regions lost by the optimal model.

A. Hyperparameters

The hyperparameters for the RL are shown in Table I. The
number of parameters sampled per iteration Nθ is adaptively
chosen by the CMA-ES optimizer according to the parameter
dimension. The sample density ργ is chosen to be 0.1 which
has the benefit of speeding up the learning process compared
to evaluating all discretized task samples (i.e. ργ = 1). The
initial standard deviation σ0 of the parameters is set to a
relatively small number, since the initial ROM already works
for simple tasks. Moreover, we observe that using a larger
standard deviation σ0 does not show better performance
in our experiments, and it has a drawback of potentially
diverging from the optimal parameters from time to time.
For the curriculum learning, we set the initial task space to
be straight-line walking with stride lengths between -0.1 m
and 0.2 m. The task space is discretized by 0.1 m, 0.1 rad and

0.45 rad/s in stride length, ground incline and turning rate,
respectively. Lastly, we only expand the task space every 30
iterations to learn a model gradually.

B. Comparing the Optimal Model to LIP (Initial Model)
We compare the performance of the initial model θ0 and

the optimal model from the learning result. To evaluate the
model performance, we run the simulation for a wide range
of stride lengths, ground inclines and turning rates. We then
extract the periodic walking gaits according to the criteria
shown in Table II which ensure variations over foot steps fall
below specific thresholds. Given these periodic trajectories,
we compute the cost Hγ,u(θ) and plot the landscape of the
cost ratio of the optimal model to the initial model, shown in
Fig. 2a. The color scheme red-to-blue illustrates the degree to
which the ROM shows improvement, with red corresponding
to a minimal improvement and blue to a 20% cost reduction.

In addition to the ratio, we also visualize the task region
where either the initial model or the optimal model fails to
complete, visualized by green and orange. Green corresponds
to the task regions that the optimal model gains, and orange
corresponds to the regions that the optimal model loses.

In this example, the optimal ROM reduces the cost across
almost the entire task space (up to 21% cost reduction).
For flat ground walking tasks, the optimal model shows the
largest improvement in the region of small stride lengths.
For inclined walking, the optimal model achieves higher per-
formance improvement in downhill tasks than uphill tasks.
Additionally, the optimal model increases the task region size
by 49% for inclined walking. For example, at an incline of
-0.2 rad, the maximum stride length increases from 0.2 m to
0.37m.

C. Comparison against our Prior Work

We also conducted a set of experiments similar to Section
V-B. Instead of comparing against the initial model, we
compare the optimal model from Algorithm 2 to the optimal
from the prior work [18]. The cost landscape comparison for
this is shown in Fig. 2b.

Compared to the prior approach, the optimal model of this
paper shows up to 28% increase in task space along with an
average 2.7% cost improvement. For the flat ground walking
tasks, the model yields a 22% larger viable task region than
that of the prior approach. For the inclined walking tasks, it
is 28% larger. We hypothesize that this improvement comes
from the fact that in the RL framework we are able to use a
Cassie model of high fidelity during training, while the prior
approach was limited to a simplified Cassie model for ease
of solving the inner-level optimization in Eq. (3).

We note that, besides the above numerical comparisons,
the RL approach in this paper is easier to implement than
the prior approach, since it does not require a careful
implementation of offline trajectory optimization (inner-level
optimization in Eq. (3)) in conjunction with the online
control policy (uo(θ) in Section III) for reducing the gap
between the open-loop and closed-loop performances.

D. Generalization to New Task Space Parameterization

One advantage of using a model-based approach is the
flexibility in specifying new tasks, as motivated in Section I.
During the training stage of our experiment shown above,
we train the model using common tasks including stride
length, turning rate and ground incline. We demonstrate that
the model can be easily extended to achieve unseen tasks
by modifying the MPC diagram in Fig. 1. For example,
we might want to ensure that a body-mounted sensor is
oriented at a target of interest, or we might want a robot to
collaboratively carry a table with a human, which requires the
robot facing a different direction than the walking direction.
To mimic these scenarios for Cassie, we turn Cassie’s pelvis
to the side while walking forward. We achieve this by
simply changing the desired value of the pelvis yaw angle
for the regularization trajectory generator in Fig. 1. In the

initial standard deviation σ0 1e-3
number of sampled parameters per iteration Nθ 17

sample density ργ 0.1
number of iterations for task space expansion Nc 30

stride length discretization 0.1 m
turning rate discretization 0.45 rad/s

ground incline discretization 0.1 rad

TABLE I
HYPERPARAMETERS FOR THE MODEL LEARNING

Stride length variation < 2 cm
Side stepping variation < 3 cm
Pelvis height variation < 3 cm
Pelvis yaw variation < 0.1 rad

Window size 4 consecutive footsteps

TABLE II
CRITERIA TO QUALIFY A PERIODIC WALKING GAIT

accompanying video, we can see that the robot achieves this
task without any more offline training.

VI. CONCLUSION AND FUTURE WORK

We formulate a model-based reinforcement learning prob-
lem for reduced-order models of legged locomotion. This
provides an avenue to bridge the gap between the well-
established model-based control and the emerging field of
reinforcement learning for legged robots, combining the
performance-maximizing capability of RL with the physical
interpretability and the task specification flexibility of model-
based approaches. The experiments show that the optimal
model reduces the torque cost by up to 21% and improves
the viable task region size by up to 49% over the traditional
models like LIP. We also compare this work to our prior
work which uses full model trajectory optimization during
the ROM optimization, and the results show an up to 28%
improvement in the viable task region size along with a mild
improvement in torque cost.

In this paper, we solve the RL problem using CMA-
ES, but theoretically any reinforcement learning optimizer
can be applied to our RL framework in Fig. 1, since our
policy (ROM planner) is differentiable [40]. Future work
includes exploring more optimizers to find one that results
in the highest performance improvement. Additionally, we
observed in our prior work [18] that parametrizing the em-
bedding function r along with the ROM dynamics function
g (i.e. both Eq. (1a) and (1b)) lead to higher performance
improvement than parameterizing only g. In this paper, we
simplified the problem and the RL formulation by limiting
r to a CoM kinematic function, so one future direction is to
parameterize both r and g, and learn the model in a similar
pipeline.

VII. ACKNOWLEDGMENT

Toyota Research Institute provided funds to support this
work.

REFERENCES

[1] L. Sentis and O. Khatib, “Control of free-floating humanoid robots
through task prioritization,” in Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, pp. 1718–1723, IEEE,
2005.

[2] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in
2013 IEEE International Conference on Robotics and Automation,
pp. 3103–3109, IEEE, 2013.

[3] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for Atlas,” Au-
tonomous Robots, vol. 40, no. 3, pp. 429–455, 2016.

[4] E. Ackerman, “Boston dynamics’ cheetah robot now faster than fastest
human,” IEEE Spectrum (Automation Blog)., 2012.

[5] P. Marion and the team, “Flipping the script with atlas.”
https://blog.bostondynamics.com/flipping-the-script-with-atlas.

[6] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-
adaptive, alip-based bipedal locomotion controller via model predic-
tive control and virtual constraints,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6724–6731,
IEEE, 2022.

[7] X. Xiong and A. Ames, “3-d underactuated bipedal walking via h-lip
based gait synthesis and stepping stabilization,” IEEE Transactions on
Robotics, vol. 38, no. 4, pp. 2405–2425, 2022.

[8] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and
A. Del Prete, “Optimization-based control for dynamic legged robots,”
arXiv preprint arXiv:2211.11644, 2022.

[9] “Boston dynamics petman prototype.”
https://www.youtube.com/watch?v=67CUudkjEG4. Accessed:
2023-09-04.

[10] J. Reher, E. A. Cousineau, A. Hereid, C. M. Hubicki, and A. D. Ames,
“Realizing dynamic and efficient bipedal locomotion on the humanoid
robot durus,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1794–1801, IEEE, 2016.

[11] E. Ackerman, “Durus: Sri’s ultra-efficient walking humanoid robot,”
IEEE Spectrum (Automation Blog)., 2015.

[12] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The international
journal of robotics research, vol. 31, no. 9, pp. 1094–1113, 2012.

[13] M. A. Posa, T. Koolen, and R. L. Tedrake, “Balancing and step
recovery capturability via sums-of-squares optimization,” 2017.

[14] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42–56, 2003.

[15] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC), pp. 3420–3431,
IEEE, 2019.

[16] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
2016 IEEE 55th Conference on Decision and Control (CDC), pp. 827–
834, IEEE, 2016.

[17] C. Khazoom, D. Gonzalez-Diaz, Y. Ding, and S. Kim, “Humanoid
self-collision avoidance using whole-body control with control bar-
rier functions,” in 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids), pp. 558–565, IEEE, 2022.

[18] Y.-M. Chen, J. Hu, and M. Posa, “Beyond inverted pendulums:
Task-optimal simple models of legged locomotion,” arXiv preprint
arXiv:2301.02075, 2023.

[19] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” arXiv preprint
arXiv:2105.08328, 2021.

[20] D. Crowley, J. Dao, H. Duan, K. Green, J. Hurst, and A. Fern,
“Optimizing bipedal locomotion for the 100m dash with comparison to
human running,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 12205–12211, IEEE, 2023.

[21] J. Dao, K. Green, H. Duan, A. Fern, and J. Hurst, “Sim-to-real
learning for bipedal locomotion under unsensed dynamic loads,” in
2022 International Conference on Robotics and Automation (ICRA),
pp. 10449–10455, IEEE, 2022.

[22] Y. Ma, F. Farshidian, and M. Hutter, “Learning arm-assisted fall
damage reduction and recovery for legged mobile manipulators,” in

2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 12149–12155, IEEE, 2023.

[23] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[24] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit
humanoid robot: Design, motion planning, and control for acrobatic
behaviors,” in 2020 IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids), pp. 1–8, IEEE, 2021.

[25] X. Xiong and A. D. Ames, “Dynamic and versatile humanoid walking
via embedding 3d actuated slip model with hybrid lip based stepping,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6286–6293,
2020.

[26] B. Peherstorfer and K. Willcox, “Dynamic data-driven reduced-order
models,” Computer Methods in Applied Mechanics and Engineering,
vol. 291, pp. 21–41, 2015.

[27] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” in Confer-
ence on Robot Learning, pp. 1–10, PMLR, 2020.

[28] A. Pandala, R. T. Fawcett, U. Rosolia, A. D. Ames, and K. A. Hamed,
“Robust predictive control for quadrupedal locomotion: Learning to
close the gap between reduced-and full-order models,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6622–6629, 2022.

[29] E. Ackerman, “Agility robotics introduces cassie, a dynamic and
talented robot delivery ostrich,” IEEE Spectrum (Automation Blog).,
2017.

[30] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum
mode,” vol. 2, pp. 1405–1411, IEEE International Conference on
Robotics and Automation (ICRA), 1991.

[31] R. Blickhan, “The spring-mass model for running and hopping,”
Journal of biomechanics, vol. 22, no. 11-12, pp. 1217–1227, 1989.

[32] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa,
“The 3D linear inverted pendulum mode: a simple modeling for a
biped walking pattern generation,” pp. 239–246, IEEE International
Conference on Intelligent Robots and Systems (IROS), 2001.

[33] B. Robotics, “Nadia humanoid.” https://www.ihmc.us/nadia-
humanoid/. Accessed: 2022-09-05.

[34] Boston Dynamics, “Atlas.” https://bostondynamics.com/atlas/. Ac-
cessed: 2023-08-27.

[35] N. Hansen, “The cma evolution strategy: a comparing review,” To-
wards a new evolutionary computation: Advances in the estimation of
distribution algorithms, pp. 75–102, 2006.

[36] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[37] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

[38] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” arXiv preprint
arXiv:2205.02824, 2022.

[39] R. Tedrake, “Drake: Model-based design and verification for robotics,”
2019.

[40] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

	Introduction
	Contributions

	Background
	Full-order Model of Cassie
	ROMs for Legged Locomotion
	Model Predictive Control
	High-level Command Generator
	Finite State Machine
	Trajectory Generator
	Low-level Controller

	Problem Statement
	ROM learning via RL
	Reinforcement Learning Structure
	Policy Parameterization
	Rewards and the RL Problem Statement
	Curriculum Learning

	Experimental Result
	Hyperparameters
	Comparing the Optimal Model to LIP (Initial Model)
	Comparison against our Prior Work
	Generalization to New Task Space Parameterization

	Conclusion and Future Work
	Acknowledgment
	References

